112-1_數位影像處理
教學目標
電腦視覺,是目前相當熱門的一門研究課題,其所應用的領域也相當多元。而電腦視覺的達成實是架構在一些影像處理的技術上,這些技術背後的原理亦是基於許多的數學理論所成,包含偏微分、極值、基底轉換、特徵值、均方差等。因此,希望藉由開設這門課讓應數系的學生了解其所學的應用。這學期課程的教學目標,包含如下:
1. Python 中 OpenCV 庫內函數的使用。
2. OpenCV 庫內函數的背後數學理論。
3. 利用影像處理技術完成一些小專題。
4. Python 中一些數學相關庫,如 Numpy, Scipy, Matplolib 等的使用。
授課形式
理論講述與討論-40.00%;個案分析或作品賞析-30.00%;專題實作與報告-30.00%;田野調查-0.00%;實驗-0.00%;其他-0.00%
課程內容與進度
課程預計教授的內容,如下:
1. Python 程式語言介紹。
2. 數位影像處理相關領域術語及知識。
3. OpenCV 函數庫介紹。
4. 數位影像基礎。
5. 幾何轉換。
6. 影像增強技術。
7. 頻率域影像處理。
8. 影像還原。
9. 彩色影像處理。
10. 影像分割。
11. 二值影像處理。
12. 小波轉換。
13. 影像壓縮。
14. 特徵擷取。
15. 影像特效。
16. 深度學習。
註:課程不會用到太深入的 Python 程式語言,我們也會在開學的第一週簡單介紹一下它。
教科書/參考書
教科書:數位影像處理:Python 程式實作,第3版,張元翔 編著
參考書:
1. 影像處理與電腦視覺,第7版, 鍾國亮 編著
2. Digital Image Processing,4th edition, Rafael Gonzalez and Richard Woods
評分標準
平時成績(含作業及出席率)70﹪、 期末報告30%
學分數
3
授課時數(周)
3
開課班級
M11241
修課人數
73
電腦視覺,是目前相當熱門的一門研究課題,其所應用的領域也相當多元。而電腦視覺的達成實是架構在一些影像處理的技術上,這些技術背後的原理亦是基於許多的數學理論所成,包含偏微分、極值、基底轉換、特徵值、均方差等。因此,希望藉由開設這門課讓應數系的學生了解其所學的應用。這學期課程的教學目標,包含如下:
1. Python 中 OpenCV 庫內函數的使用。
2. OpenCV 庫內函數的背後數學理論。
3. 利用影像處理技術完成一些小專題。
4. Python 中一些數學相關庫,如 Numpy, Scipy, Matplolib 等的使用。
授課形式
理論講述與討論-40.00%;個案分析或作品賞析-30.00%;專題實作與報告-30.00%;田野調查-0.00%;實驗-0.00%;其他-0.00%
課程內容與進度
課程預計教授的內容,如下:
1. Python 程式語言介紹。
2. 數位影像處理相關領域術語及知識。
3. OpenCV 函數庫介紹。
4. 數位影像基礎。
5. 幾何轉換。
6. 影像增強技術。
7. 頻率域影像處理。
8. 影像還原。
9. 彩色影像處理。
10. 影像分割。
11. 二值影像處理。
12. 小波轉換。
13. 影像壓縮。
14. 特徵擷取。
15. 影像特效。
16. 深度學習。
註:課程不會用到太深入的 Python 程式語言,我們也會在開學的第一週簡單介紹一下它。
教科書/參考書
教科書:數位影像處理:Python 程式實作,第3版,張元翔 編著
參考書:
1. 影像處理與電腦視覺,第7版, 鍾國亮 編著
2. Digital Image Processing,4th edition, Rafael Gonzalez and Richard Woods
評分標準
平時成績(含作業及出席率)70﹪、 期末報告30%
學分數
3
授課時數(周)
3
開課班級
M11241
修課人數
73
112-1_組合學專題(一)
教學目標
This is a research-oriented course. We will go through various research topics in group testing, coding theory and applications of graph neural network. Some papers or course materials will be assigned according to students' interest. Students enrolled in this course require prior knowledge of elementary combinatorics.
授課形式
理論講述與討論-60.00%;個案分析或作品賞析-0.00%;專題實作與報告-40.00%;田野調查-0.00%;實驗-0.00%;其他-0.00%
課程內容與進度
as in the introduction.
教科書/參考書
Some research papers will be assigned.
評分標準
In Class Report and Discussion: 80 %
Participation: 20 %
學分數
3
授課時數(周)
3
開課班級
M11241
修課人數
4
This is a research-oriented course. We will go through various research topics in group testing, coding theory and applications of graph neural network. Some papers or course materials will be assigned according to students' interest. Students enrolled in this course require prior knowledge of elementary combinatorics.
授課形式
理論講述與討論-60.00%;個案分析或作品賞析-0.00%;專題實作與報告-40.00%;田野調查-0.00%;實驗-0.00%;其他-0.00%
課程內容與進度
as in the introduction.
教科書/參考書
Some research papers will be assigned.
評分標準
In Class Report and Discussion: 80 %
Participation: 20 %
學分數
3
授課時數(周)
3
開課班級
M11241
修課人數
4
112-1_數值拓延法
教學目標
在理論部分需了解延拓法的理論,包含隱函數定理及分歧理論。在計算部分需能利用一種程式語言撰寫程式,追蹤解曲線。
授課形式
理論講述與討論-60.00%;個案分析或作品賞析-0.00%;專題實作與報告-40.00%;田野調查-0.00%;實驗-0.00%;其他-0.00%
課程內容與進度
週次 內容 1-2 Implicit function Theorem 3 Newton's method 4 predictor-solver methods 5 Sard's Theorem 6 Solution sets for regular values. 7 Degree Theory 8 Homotopy Invariance of the degree 9 Bifurcation Theorem 10 continuation method 11 pseudo-arclength continuation method. 12 Multi-parameter problems 13 Paths of periodic solutions and Hopf bifurcation. 14 Algorithm 15-17 Coding 18 期末報告
教科書/參考書
Lectures on Numerical methods in Bifurcatiopn problems
評分標準
一、平時成績 (40%) 二、期末報告 (60%)
學分數
3
授課時數(周)
3
開課班級
M11241
修課人數
3
在理論部分需了解延拓法的理論,包含隱函數定理及分歧理論。在計算部分需能利用一種程式語言撰寫程式,追蹤解曲線。
授課形式
理論講述與討論-60.00%;個案分析或作品賞析-0.00%;專題實作與報告-40.00%;田野調查-0.00%;實驗-0.00%;其他-0.00%
課程內容與進度
週次 內容 1-2 Implicit function Theorem 3 Newton's method 4 predictor-solver methods 5 Sard's Theorem 6 Solution sets for regular values. 7 Degree Theory 8 Homotopy Invariance of the degree 9 Bifurcation Theorem 10 continuation method 11 pseudo-arclength continuation method. 12 Multi-parameter problems 13 Paths of periodic solutions and Hopf bifurcation. 14 Algorithm 15-17 Coding 18 期末報告
教科書/參考書
Lectures on Numerical methods in Bifurcatiopn problems
評分標準
一、平時成績 (40%) 二、期末報告 (60%)
學分數
3
授課時數(周)
3
開課班級
M11241
修課人數
3
112-1_實變函數論(一)
教學目標
使學生熟悉Lebesgue測度,Lebesgue積分的觀念、性質和操作技巧,以及如何應用在近代分析學和機率論。
授課形式
理論講述與討論-80.00%;個案分析或作品賞析-0.00%;專題實作與報告-0.00%;田野調查-0.00%;實驗-0.00%;其他:演習-20.00%
課程內容與進度
Lebesgue outer measure,Lebesgue measure,non-Lebesgue measurable set,Lebesgue measurable function,Littlewood three principles, Lebesgue integral,Lebesgue dominated convergence theorem,the Minkowski and Holder inequalities, the concepts of convergence and completeness,Riesz-Fisher theorem,Approximation in L^p space,product measure and Fubini theorem。
教科書/參考書
H. L. Royden:Real Analysis,1988 R. L. Wheeden and A. Zygmund:Measure and integral:An introduction to real analysis,1977
評分標準
作業70%,期末測驗30%
學分數
3
授課時數(周)
3
開課班級
M11241
修課人數
4
使學生熟悉Lebesgue測度,Lebesgue積分的觀念、性質和操作技巧,以及如何應用在近代分析學和機率論。
授課形式
理論講述與討論-80.00%;個案分析或作品賞析-0.00%;專題實作與報告-0.00%;田野調查-0.00%;實驗-0.00%;其他:演習-20.00%
課程內容與進度
Lebesgue outer measure,Lebesgue measure,non-Lebesgue measurable set,Lebesgue measurable function,Littlewood three principles, Lebesgue integral,Lebesgue dominated convergence theorem,the Minkowski and Holder inequalities, the concepts of convergence and completeness,Riesz-Fisher theorem,Approximation in L^p space,product measure and Fubini theorem。
教科書/參考書
H. L. Royden:Real Analysis,1988 R. L. Wheeden and A. Zygmund:Measure and integral:An introduction to real analysis,1977
評分標準
作業70%,期末測驗30%
學分數
3
授課時數(周)
3
開課班級
M11241
修課人數
4
112-1_非局部偏微分方程專題(一)
教學目標
非局部偏微分方程在自然與科學領域中皆有許多應用, 如生物、物理、化學、幾何與財務等。而在這門課將介紹如何以分非局部偏微分方程的相關問題為主以及與整數階在分析上的不同之處。
授課形式
理論講述與討論-50.00%;個案分析或作品賞析-0.00%;專題實作與報告-50.00%;田野調查-0.00%;實驗-0.00%;其他-0.00%
課程內容與進度
1. Introduction to nonlocal partial differential equations. 2. The Green's function. 3. Maximum Principles for the nonlocal partial differential equations.
教科書/參考書
Wenxiong Chan, Yan Li and Pei Ma: The Fractional Laplacian
評分標準
平時課堂表現:70%; 上台演練:30%
學分數
3
授課時數(周)
3
開課班級
M11241
修課人數
2
非局部偏微分方程在自然與科學領域中皆有許多應用, 如生物、物理、化學、幾何與財務等。而在這門課將介紹如何以分非局部偏微分方程的相關問題為主以及與整數階在分析上的不同之處。
授課形式
理論講述與討論-50.00%;個案分析或作品賞析-0.00%;專題實作與報告-50.00%;田野調查-0.00%;實驗-0.00%;其他-0.00%
課程內容與進度
1. Introduction to nonlocal partial differential equations. 2. The Green's function. 3. Maximum Principles for the nonlocal partial differential equations.
教科書/參考書
Wenxiong Chan, Yan Li and Pei Ma: The Fractional Laplacian
評分標準
平時課堂表現:70%; 上台演練:30%
學分數
3
授課時數(周)
3
開課班級
M11241
修課人數
2
112-1_動態系統(一)
教學目標
動態系統在許多不同領域如物理、化學、生態、生物、工程、腦科學和經濟學上都有重大應用,這門課將介紹簡單的動態法則如何引起複雜混沌的行為,並提出嚴謹的數學理論刻畫混沌的物理行為。當中,可以學習到結合之前的數學基礎(例如:微積分、高等微積分及微分方程等)共同處理複雜的動態現象,藉由實際例子看到動態系統理論在跨領域學科上的應用。
授課形式
理論講述與討論-80.00%;個案分析或作品賞析-0.00%;專題實作與報告-20.00%;田野調查-0.00%;實驗-0.00%;其他-0.00%
課程內容與進度
1.History and Examples of Dynamical Systems
2.Orbits
3.Graphical Analysis
4.Fixed and Periodic Points
5.Bifurcations
6.The Quadratic Family
7.Transition to Chaos
8.Symbolic Dynamics
9. Chaos
10. Sharkovsky's Theorem
11. Role of the Critical Point
12. Newton's Method
13. Fractals
14. Complex Functions
15. Julia Set and Mandelbrot Set
視情況調整內容與進度
教科書/參考書
1.Robert L. Devaney, A Forst Course in Chaotic Dynamical Systems, second edition, Addison-Wesley Publ. Co., New York, 1992.
2.Lynch, Dynamical Systems with Applications using MATLAB, second edition,Springer, 2014.
評分標準
出席率70%,期末報告30%。
學分數
3
授課時數(周)
3
開課班級
M11241
修課人數
20
動態系統在許多不同領域如物理、化學、生態、生物、工程、腦科學和經濟學上都有重大應用,這門課將介紹簡單的動態法則如何引起複雜混沌的行為,並提出嚴謹的數學理論刻畫混沌的物理行為。當中,可以學習到結合之前的數學基礎(例如:微積分、高等微積分及微分方程等)共同處理複雜的動態現象,藉由實際例子看到動態系統理論在跨領域學科上的應用。
授課形式
理論講述與討論-80.00%;個案分析或作品賞析-0.00%;專題實作與報告-20.00%;田野調查-0.00%;實驗-0.00%;其他-0.00%
課程內容與進度
1.History and Examples of Dynamical Systems
2.Orbits
3.Graphical Analysis
4.Fixed and Periodic Points
5.Bifurcations
6.The Quadratic Family
7.Transition to Chaos
8.Symbolic Dynamics
9. Chaos
10. Sharkovsky's Theorem
11. Role of the Critical Point
12. Newton's Method
13. Fractals
14. Complex Functions
15. Julia Set and Mandelbrot Set
視情況調整內容與進度
教科書/參考書
1.Robert L. Devaney, A Forst Course in Chaotic Dynamical Systems, second edition, Addison-Wesley Publ. Co., New York, 1992.
2.Lynch, Dynamical Systems with Applications using MATLAB, second edition,Springer, 2014.
評分標準
出席率70%,期末報告30%。
學分數
3
授課時數(周)
3
開課班級
M11241
修課人數
20
112-1_數值偏微分方程(一)
教學目標
This subject will introduce numerical methods of three basic types of partial differential equations which relate to many mathematical models arising from real problems. And students will develop fundamental skills to solve practical ordinary and partial differential equations numerically and efficiently.
授課形式
理論講述與討論-50.00%;個案分析或作品賞析-0.00%;專題實作與報告-0.00%;田野調查-0.00%;實驗-0.00%;其他:in-class discussion and assignments-50.00%
課程內容與進度
Eighteen weeks in this semester: Two to three weeks a topic. Systematical procedures for each topic are shown as follows: 1. Terminology explanation 2. Background and derivation of mathematical models 3. Numerical methods (and stability analysis if possible) 4. Implementation and demo results
教科書/參考書
1. Randall J. LeVeque, Finite Difference Methods for Differential Equations 2. J. D. Faires and R. Burden, Numerical Methods, 4th edition. 3. J. David Logan, Applied Mathematics, 3rd Edition. 4. Steven C. Chapra & Raymond P. Canale, Numerical Methods for Engineers, 6th Edition.
評分標準
Grading: in-class discussion (40%), assignments (40%), and final report (20%)
學分數
3
授課時數(周)
3
開課班級
M11241
修課人數
17
This subject will introduce numerical methods of three basic types of partial differential equations which relate to many mathematical models arising from real problems. And students will develop fundamental skills to solve practical ordinary and partial differential equations numerically and efficiently.
授課形式
理論講述與討論-50.00%;個案分析或作品賞析-0.00%;專題實作與報告-0.00%;田野調查-0.00%;實驗-0.00%;其他:in-class discussion and assignments-50.00%
課程內容與進度
Eighteen weeks in this semester: Two to three weeks a topic. Systematical procedures for each topic are shown as follows: 1. Terminology explanation 2. Background and derivation of mathematical models 3. Numerical methods (and stability analysis if possible) 4. Implementation and demo results
教科書/參考書
1. Randall J. LeVeque, Finite Difference Methods for Differential Equations 2. J. D. Faires and R. Burden, Numerical Methods, 4th edition. 3. J. David Logan, Applied Mathematics, 3rd Edition. 4. Steven C. Chapra & Raymond P. Canale, Numerical Methods for Engineers, 6th Edition.
評分標準
Grading: in-class discussion (40%), assignments (40%), and final report (20%)
學分數
3
授課時數(周)
3
開課班級
M11241
修課人數
17
112-1_最佳化理論與方法(一)
教學目標
本課程提供了理論和線性優化算法的基本認識。它涉及數學分析,定理證明,算法設計和數值方法。
授課形式
理論講述與討論-70.00%;個案分析或作品賞析-0.00%;專題實作與報告-30.00%;田野調查-0.00%;實驗-0.00%;其他-0.00%
課程內容與進度
1. INTRODUCTION AND PRELIMINARIES 2. GEOMETRY OF LP 3. SIMPLEX METHOD 4. DUALITY AND SENSITIVITY ANALYSIS 5. INTERIOR POINT METHOD 6. ROBUST LINEAR OPTIMIZATION
教科書/參考書
Shu-Cherng Fang and Sarat Puthenpura, Linear Optimization and Extensions: Theory and Algorithm, Prentice Hall International Edition
評分標準
1. 課堂討論30% 2. 期中報告30% 3. 期末報告40%
學分數
3
授課時數(周)
3
開課班級
A10941
修課人數
27
本課程提供了理論和線性優化算法的基本認識。它涉及數學分析,定理證明,算法設計和數值方法。
授課形式
理論講述與討論-70.00%;個案分析或作品賞析-0.00%;專題實作與報告-30.00%;田野調查-0.00%;實驗-0.00%;其他-0.00%
課程內容與進度
1. INTRODUCTION AND PRELIMINARIES 2. GEOMETRY OF LP 3. SIMPLEX METHOD 4. DUALITY AND SENSITIVITY ANALYSIS 5. INTERIOR POINT METHOD 6. ROBUST LINEAR OPTIMIZATION
教科書/參考書
Shu-Cherng Fang and Sarat Puthenpura, Linear Optimization and Extensions: Theory and Algorithm, Prentice Hall International Edition
評分標準
1. 課堂討論30% 2. 期中報告30% 3. 期末報告40%
學分數
3
授課時數(周)
3
開課班級
A10941
修課人數
27
112-1_矩陣計算(一)
教學目標
矩陣計算是科學計算的基石,主要分為求解線性系統以及特徵值問題的數值方法。在課程中,將訓練學生矩陣分析以及計算的能力。 遠距使用google meet: https://meet.google.com/nyz-gvgb-jjb
授課形式
理論講述與討論-80.00%;個案分析或作品賞析-0.00%;專題實作與報告-20.00%;田野調查-0.00%;實驗-0.00%;其他-0.00%
課程內容與進度
1. matrix analysis 2. general linear systems 3. iterative method for solving linear system 4. symmetric eigenvalue problem 5. unsymmetric eigenvalue problem
教科書/參考書
1. Lecture Notes of Matrix Computations, Wen-Wei Lin 2. Matrix computations /Gene H. Golub, Charles F. Van Loan.
評分標準
1. 期中考或期中報告 2. 期末考或期末報告 3. 平常成績
學分數
3
授課時數(周)
3
開課班級
A10941
修課人數
16
矩陣計算是科學計算的基石,主要分為求解線性系統以及特徵值問題的數值方法。在課程中,將訓練學生矩陣分析以及計算的能力。 遠距使用google meet: https://meet.google.com/nyz-gvgb-jjb
授課形式
理論講述與討論-80.00%;個案分析或作品賞析-0.00%;專題實作與報告-20.00%;田野調查-0.00%;實驗-0.00%;其他-0.00%
課程內容與進度
1. matrix analysis 2. general linear systems 3. iterative method for solving linear system 4. symmetric eigenvalue problem 5. unsymmetric eigenvalue problem
教科書/參考書
1. Lecture Notes of Matrix Computations, Wen-Wei Lin 2. Matrix computations /Gene H. Golub, Charles F. Van Loan.
評分標準
1. 期中考或期中報告 2. 期末考或期末報告 3. 平常成績
學分數
3
授課時數(周)
3
開課班級
A10941
修課人數
16
112-1_書報討論(一)
教學目標
擴展研究生的學術視野。
授課形式
理論講述與討論-0.00%;個案分析或作品賞析-0.00%;專題實作與報告-20.00%;田野調查-0.00%;實驗-0.00%;其他:專題演講-80.00%
課程內容與進度
邀請各類數學領域的學者專家進行演講。
教科書/參考書
評分標準
出席率:70% 期末報告:3%0
學分數
1
授課時數(周)
2
開課班級
M11241
修課人數
5
擴展研究生的學術視野。
授課形式
理論講述與討論-0.00%;個案分析或作品賞析-0.00%;專題實作與報告-20.00%;田野調查-0.00%;實驗-0.00%;其他:專題演講-80.00%
課程內容與進度
邀請各類數學領域的學者專家進行演講。
教科書/參考書
評分標準
出席率:70% 期末報告:3%0
學分數
1
授課時數(周)
2
開課班級
M11241
修課人數
5
112-1_專題實作(二)
教學目標
培養學生思考問題、解決問題以及上台報告、撰寫報告之能力。
授課形式
理論講述與討論-10.00%;個案分析或作品賞析-30.00%;專題實作與報告-60.00%;田野調查-0.00%;實驗-0.00%;其他-0.00%
課程內容與進度
採分組方式進行,每組挑選一研究議題,並擇一指導教授。下面幾個是這學期的重要活動與日期(暫定):
(1) 期中提案報告:2022 年 11 月 11 日(六)。期中提案報告後需定期回報研究進度,有問題隨時提出;
(2) 期末成果報告:2023 年 1 月 6 日(六)。報告三天前需繳交口頭報告電子檔;
註 1:請所有修課同學務必參與第一週 2022 年 9 月 16 日(六)的修課說明,我們將更清楚的解釋修課相關事項。如果當天無法參加,請另行找時間與修課教師說明。
註 2:系所老師所帶專時實作研究方向可先至以下網頁查看: https://math.nuk.edu.tw/p/412-1018-4096.php?Lang=zh-tw
註 3:歷年學生專題成果作品可至以下網頁查看: https://sites.google.com/go.nuk.edu.tw/amp
教科書/參考書
無
評分標準
期中提案報告(10%)+期末成果報告(80%)+成果海報與影片(10%)
學分數
3
授課時數(周)
3
開課班級
A10941
修課人數
11
培養學生思考問題、解決問題以及上台報告、撰寫報告之能力。
授課形式
理論講述與討論-10.00%;個案分析或作品賞析-30.00%;專題實作與報告-60.00%;田野調查-0.00%;實驗-0.00%;其他-0.00%
課程內容與進度
採分組方式進行,每組挑選一研究議題,並擇一指導教授。下面幾個是這學期的重要活動與日期(暫定):
(1) 期中提案報告:2022 年 11 月 11 日(六)。期中提案報告後需定期回報研究進度,有問題隨時提出;
(2) 期末成果報告:2023 年 1 月 6 日(六)。報告三天前需繳交口頭報告電子檔;
註 1:請所有修課同學務必參與第一週 2022 年 9 月 16 日(六)的修課說明,我們將更清楚的解釋修課相關事項。如果當天無法參加,請另行找時間與修課教師說明。
註 2:系所老師所帶專時實作研究方向可先至以下網頁查看: https://math.nuk.edu.tw/p/412-1018-4096.php?Lang=zh-tw
註 3:歷年學生專題成果作品可至以下網頁查看: https://sites.google.com/go.nuk.edu.tw/amp
教科書/參考書
無
評分標準
期中提案報告(10%)+期末成果報告(80%)+成果海報與影片(10%)
學分數
3
授課時數(周)
3
開課班級
A10941
修課人數
11
112-1_矩陣理論(一)
教學目標
矩陣是相當重要工具,亦已廣泛應用至自然科學,資訊科學,及統計學裡。本課程將介紹矩陣的一些性質跟理論,希望幫助學生更了解矩陣。
授課形式
理論講述與討論-100.00%;個案分析或作品賞析-0.00%;專題實作與報告-0.00%;田野調查-0.00%;實驗-0.00%;其他-0.00%
課程內容與進度
週次 內容 1 Vector spaces 2 Subspaces and Linear systems 3 Linear dependence and Linear Independence 4 Bases and Dimension 5 測驗(小考I) Linear Transformations, Null spaces 6 Null spaces and Ranges 7 Matrix representation of a linear transformations 8 Elementary matrices and rank of a matrix 9 Matrix inverse and system of linear equations 10 測驗(期中考) 11 Determinants 12 Properties of determinants 13 Eigenvalues and eigenvectors 14 測驗(小考II) Eigenvalues and eigenvectors 15 Diagonalizability(I) 16 Diagonalizability(II) 17 Cayley-Hamiltion Theorem 18 測驗(期末考)
教科書/參考書
Linear Algebra, by Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence, Prentice Hall, 4th edition, ISBN: 0130084514
評分標準
一、期中考(40%) 二、期末考(40%) 三、平時成績 (20%)
學分數
3
授課時數(周)
4
開課班級
A11041
修課人數
49
矩陣是相當重要工具,亦已廣泛應用至自然科學,資訊科學,及統計學裡。本課程將介紹矩陣的一些性質跟理論,希望幫助學生更了解矩陣。
授課形式
理論講述與討論-100.00%;個案分析或作品賞析-0.00%;專題實作與報告-0.00%;田野調查-0.00%;實驗-0.00%;其他-0.00%
課程內容與進度
週次 內容 1 Vector spaces 2 Subspaces and Linear systems 3 Linear dependence and Linear Independence 4 Bases and Dimension 5 測驗(小考I) Linear Transformations, Null spaces 6 Null spaces and Ranges 7 Matrix representation of a linear transformations 8 Elementary matrices and rank of a matrix 9 Matrix inverse and system of linear equations 10 測驗(期中考) 11 Determinants 12 Properties of determinants 13 Eigenvalues and eigenvectors 14 測驗(小考II) Eigenvalues and eigenvectors 15 Diagonalizability(I) 16 Diagonalizability(II) 17 Cayley-Hamiltion Theorem 18 測驗(期末考)
教科書/參考書
Linear Algebra, by Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence, Prentice Hall, 4th edition, ISBN: 0130084514
評分標準
一、期中考(40%) 二、期末考(40%) 三、平時成績 (20%)
學分數
3
授課時數(周)
4
開課班級
A11041
修課人數
49
112-1_總體經濟學
教學目標
This course aims at • Explain basic macroeconomic measures (e.g., GDP) used to compare the economies of countries. • Describe the structure of public finances for an industrialized country. • Explain the effect of fiscal and monetary policy on the economy, including the effect on financial markets. • Explain the role of international trade, exchange rates and the balance of payments in the economy. • Explain the effect of savings and consumption rates on the economy. • Explain the major factors affecting the level of interest rates, the rate of inflation, the exchange rate, the level of employment and the rate of growth for an industrialized country. • Describe the function of money in the economy. • Explain the relationship between money and interest rates. • Explain how macroeconomic policies affect businesses.
授課形式
理論講述與討論-50.00%;個案分析或作品賞析-40.00%;專題實作與報告-0.00%;田野調查-0.00%;實驗-10.00%;其他-0.00%
課程內容與進度
1st week: Overview of Macroeconomics 2nd week: Measuring Economic Activity 3rd week: Consumption and Investment 4th week: Business Cycles and Aggregate Demand 5th~6th week: Money and the Financial System + exam 1 7th~8th week: Economic Growth 9th week: The Challenge of Economic Development 10th~11th weeK: Exchange Rates and the International Financial System 12th week: Open-Economy Macroeconomics + exam 2 13th week: Unemployment and the Foundations of Aggregate Supply 14th week: Inflation 15th weeK: Aggregate Demand and Aggregate Supply 16th week: The Influence of Monetary and Fiscal Policy on Aggregate Demand 17th~18th week: The Short-Run Trade-off between Inflation and Unemployment + exam 3
教科書/參考書
Textbook Principles of Macroeconomics, 6th edition Author: N. Gregory Mankiw Publisher: South-Western, Cengage Learning ECONOMICS, 19th edition Author: PAUL A. SAMUELSON and WILLIAM D. NORDHAUS Publisher: Douglas Reiner, McGraw-Hill Macroecoconomics: Theory and Practice, 13rd edition Author: 楊德源 Publisher: New Wun Ching Developmental Publishing Co., Ltd.
評分標準
exam 1 30% exam 2 30% exam 3 30% discussion 10%
學分數
3
授課時數(周)
3
開課班級
A10941
修課人數
23
This course aims at • Explain basic macroeconomic measures (e.g., GDP) used to compare the economies of countries. • Describe the structure of public finances for an industrialized country. • Explain the effect of fiscal and monetary policy on the economy, including the effect on financial markets. • Explain the role of international trade, exchange rates and the balance of payments in the economy. • Explain the effect of savings and consumption rates on the economy. • Explain the major factors affecting the level of interest rates, the rate of inflation, the exchange rate, the level of employment and the rate of growth for an industrialized country. • Describe the function of money in the economy. • Explain the relationship between money and interest rates. • Explain how macroeconomic policies affect businesses.
授課形式
理論講述與討論-50.00%;個案分析或作品賞析-40.00%;專題實作與報告-0.00%;田野調查-0.00%;實驗-10.00%;其他-0.00%
課程內容與進度
1st week: Overview of Macroeconomics 2nd week: Measuring Economic Activity 3rd week: Consumption and Investment 4th week: Business Cycles and Aggregate Demand 5th~6th week: Money and the Financial System + exam 1 7th~8th week: Economic Growth 9th week: The Challenge of Economic Development 10th~11th weeK: Exchange Rates and the International Financial System 12th week: Open-Economy Macroeconomics + exam 2 13th week: Unemployment and the Foundations of Aggregate Supply 14th week: Inflation 15th weeK: Aggregate Demand and Aggregate Supply 16th week: The Influence of Monetary and Fiscal Policy on Aggregate Demand 17th~18th week: The Short-Run Trade-off between Inflation and Unemployment + exam 3
教科書/參考書
Textbook Principles of Macroeconomics, 6th edition Author: N. Gregory Mankiw Publisher: South-Western, Cengage Learning ECONOMICS, 19th edition Author: PAUL A. SAMUELSON and WILLIAM D. NORDHAUS Publisher: Douglas Reiner, McGraw-Hill Macroecoconomics: Theory and Practice, 13rd edition Author: 楊德源 Publisher: New Wun Ching Developmental Publishing Co., Ltd.
評分標準
exam 1 30% exam 2 30% exam 3 30% discussion 10%
學分數
3
授課時數(周)
3
開課班級
A10941
修課人數
23
112-1_向量微積分
教學目標
向量微積分是解決物理學和工程學問題時一套相當重要的工具。本課程主要是要談 "梯度、散度和旋度" 這三個重要觀念,而對應的則是方向導數、散度定理、與 Stokes 定理因此重心就在於如何釐清線積分、曲面積分以及他們所代表的物理意義。本課程的目的是複習大一下學期微積分,並補足大一微積分未能教到的部分,其內容可作為學生未來學習流體力學和大學部微分幾何的基礎知識。
1. 本課程部份訊息會在Microsoft Teams上公布,請同學務必加入,使用方法如下:
請到下列網址:https://www.office.com/ 後登入,
學生帳號:學號@o365.nuk.edu.tw ,例如:a10XXXXX@o365.nuk.edu.tw
預設密碼:Nuk西元生日八碼 例如:Nuk199XXXXX(注意N是大寫),此外登入後需設定新的密碼,之後就能以學生帳戶進入Microsoft Teams
2. 於Microsoft Teams中左側標籤【團隊】進入後,再於右上的【加入或建立團隊】點選後在【使用代碼加入團隊】輸入團隊代碼: xzvzw90
授課形式
理論講述與討論-70.00%;個案分析或作品賞析-0.00%;專題實作與報告-0.00%;田野調查-0.00%;實驗-0.00%;其他:上台解題-30.00%
課程內容與進度
*以下供參考,會依實際進度稍作調整。
10 Conics, Parametric Equations, and Polar Coordinates (Week 1-3)
10.2 Plane Curves and Parametric Equations
10.3 Parametric Equations and Calculus
10.4 Polar Coordinates and Polar Graphs
10.5 Area and Arc Length in Polar Coordinates
12 Vector-Valued Functions (Week 4-7)
12.1 Vector-Valued Functions
12.2 Differentiation and Integration of Vector-Valued Functions
12.3 Velocity and Acceleration
12.4 Tangent Vectors and Normal Vectors
12.5 Arc Length and Curvature
14 Multiple Integration (Week 8-11)
14.3 Change of Variables: Polar Coordinates
14.5 Surface Area
14.6 Triple Integrals and Applications
14.7 Triple Integrals in Other Coordinates
14.8 Change of Variables: Jacobians
15 Vector Analysis (Week 12-18)
15.1 Vector Fields
15.2 Line Integrals
15.3 Conservative Vector Fields and Independence of Path
15.4 Green's Theorem
15.5 Parametric Surfaces
15.6 Surface Integrals
15.7 Divergence Theorem
15.8 Stokes's Theorem
教科書/參考書
Ron Larson and Bruce Edwards, Calculus 12e, Metric Version, ISBN: 978-0-3579-0812-9.
評分標準
上台講解 (50%)、筆記 (30%)、出席 (20%)
學分數
3
授課時數(周)
3
開課班級
A11041
修課人數
52
向量微積分是解決物理學和工程學問題時一套相當重要的工具。本課程主要是要談 "梯度、散度和旋度" 這三個重要觀念,而對應的則是方向導數、散度定理、與 Stokes 定理因此重心就在於如何釐清線積分、曲面積分以及他們所代表的物理意義。本課程的目的是複習大一下學期微積分,並補足大一微積分未能教到的部分,其內容可作為學生未來學習流體力學和大學部微分幾何的基礎知識。
1. 本課程部份訊息會在Microsoft Teams上公布,請同學務必加入,使用方法如下:
請到下列網址:https://www.office.com/ 後登入,
學生帳號:學號@o365.nuk.edu.tw ,例如:a10XXXXX@o365.nuk.edu.tw
預設密碼:Nuk西元生日八碼 例如:Nuk199XXXXX(注意N是大寫),此外登入後需設定新的密碼,之後就能以學生帳戶進入Microsoft Teams
2. 於Microsoft Teams中左側標籤【團隊】進入後,再於右上的【加入或建立團隊】點選後在【使用代碼加入團隊】輸入團隊代碼: xzvzw90
授課形式
理論講述與討論-70.00%;個案分析或作品賞析-0.00%;專題實作與報告-0.00%;田野調查-0.00%;實驗-0.00%;其他:上台解題-30.00%
課程內容與進度
*以下供參考,會依實際進度稍作調整。
10 Conics, Parametric Equations, and Polar Coordinates (Week 1-3)
10.2 Plane Curves and Parametric Equations
10.3 Parametric Equations and Calculus
10.4 Polar Coordinates and Polar Graphs
10.5 Area and Arc Length in Polar Coordinates
12 Vector-Valued Functions (Week 4-7)
12.1 Vector-Valued Functions
12.2 Differentiation and Integration of Vector-Valued Functions
12.3 Velocity and Acceleration
12.4 Tangent Vectors and Normal Vectors
12.5 Arc Length and Curvature
14 Multiple Integration (Week 8-11)
14.3 Change of Variables: Polar Coordinates
14.5 Surface Area
14.6 Triple Integrals and Applications
14.7 Triple Integrals in Other Coordinates
14.8 Change of Variables: Jacobians
15 Vector Analysis (Week 12-18)
15.1 Vector Fields
15.2 Line Integrals
15.3 Conservative Vector Fields and Independence of Path
15.4 Green's Theorem
15.5 Parametric Surfaces
15.6 Surface Integrals
15.7 Divergence Theorem
15.8 Stokes's Theorem
教科書/參考書
Ron Larson and Bruce Edwards, Calculus 12e, Metric Version, ISBN: 978-0-3579-0812-9.
評分標準
上台講解 (50%)、筆記 (30%)、出席 (20%)
學分數
3
授課時數(周)
3
開課班級
A11041
修課人數
52
112-1_矩陣理論實習(一)
教學目標
討論矩陣理論課程中的習題及課堂上的問題。
授課形式
理論講述與討論-60.00%;個案分析或作品賞析-0.00%;專題實作與報告-40.00%;田野調查-0.00%;實驗-0.00%;其他-0.00%
課程內容與進度
週次 內容 1 Vector spaces 2 Subspaces and Linear systems 3 Linear dependence and Linear Independence 4 Bases and Dimension 5 Linear Transformations, Null spaces 6 Null spaces and Ranges 7 Matrix representation of a linear transformations 8 Elementary matrices and rank of a matrix 9 Matrix inverse and system of linear equations 10 測驗 11 Determinants 12 Properties of determinants 13 Eigenvalues and eigenvectors 14 Eigenvalues and eigenvectors 15 Diagonalizability(I) 16 Diagonalizability(II) 17 Cayley-Hamiltion Theorem 18 測驗
教科書/參考書
1. Matrix Analysis, by Roger A. Horn, Charles R. Johnson ISBN: 0521386322 2. Linear Algebra, by Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence, Prentice Hall, 4th edition, ISBN: 0130084514 3. Introduction to Linear Algebra, by Gilbert Strang, Wellesley Cambridge, 3rd edition, ISBN: 0961408898
評分標準
一、小考(40%) 二、報告(40%) 三、平時分數 (20%)
學分數
1
授課時數(周)
1
開課班級
A11041
修課人數
47
討論矩陣理論課程中的習題及課堂上的問題。
授課形式
理論講述與討論-60.00%;個案分析或作品賞析-0.00%;專題實作與報告-40.00%;田野調查-0.00%;實驗-0.00%;其他-0.00%
課程內容與進度
週次 內容 1 Vector spaces 2 Subspaces and Linear systems 3 Linear dependence and Linear Independence 4 Bases and Dimension 5 Linear Transformations, Null spaces 6 Null spaces and Ranges 7 Matrix representation of a linear transformations 8 Elementary matrices and rank of a matrix 9 Matrix inverse and system of linear equations 10 測驗 11 Determinants 12 Properties of determinants 13 Eigenvalues and eigenvectors 14 Eigenvalues and eigenvectors 15 Diagonalizability(I) 16 Diagonalizability(II) 17 Cayley-Hamiltion Theorem 18 測驗
教科書/參考書
1. Matrix Analysis, by Roger A. Horn, Charles R. Johnson ISBN: 0521386322 2. Linear Algebra, by Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence, Prentice Hall, 4th edition, ISBN: 0130084514 3. Introduction to Linear Algebra, by Gilbert Strang, Wellesley Cambridge, 3rd edition, ISBN: 0961408898
評分標準
一、小考(40%) 二、報告(40%) 三、平時分數 (20%)
學分數
1
授課時數(周)
1
開課班級
A11041
修課人數
47
112-1_代數學(二)
教學目標
To understand the basic properties of rings, and fields.
授課形式
理論講述與討論-100.00%;個案分析或作品賞析-0.00%;專題實作與報告-0.00%;田野調查-0.00%;實驗-0.00%;其他-0.00%
課程內容與進度
Chapter 3. Rings.
Chapter 4. Polynomials.
Chapter 5. Factorization in Integral Domains.
Chapter 6. Fields.
教科書/參考書
Introduction to Abstract Algebra, 4th Edition
W. Keith Nicholson
評分標準
We will discuss this in class.
學分數
3
授課時數(周)
3
開課班級
A11041
修課人數
24
To understand the basic properties of rings, and fields.
授課形式
理論講述與討論-100.00%;個案分析或作品賞析-0.00%;專題實作與報告-0.00%;田野調查-0.00%;實驗-0.00%;其他-0.00%
課程內容與進度
Chapter 3. Rings.
Chapter 4. Polynomials.
Chapter 5. Factorization in Integral Domains.
Chapter 6. Fields.
教科書/參考書
Introduction to Abstract Algebra, 4th Edition
W. Keith Nicholson
評分標準
We will discuss this in class.
學分數
3
授課時數(周)
3
開課班級
A11041
修課人數
24
112-1_組合數學(一)
教學目標
To understand the concepts, techniques and methods of Combinatorics.
授課形式
理論講述與討論-100.00%;個案分析或作品賞析-0.00%;專題實作與報告-0.00%;田野調查-0.00%;實驗-0.00%;其他-0.00%
課程內容與進度
1. Fundamental Principles of Counting
5. Relations and Functions
8. The Principle of Inclusion and Exclusion
9. Generating Functions
10. Recurrence Relations
教科書/參考書
Discrete and Combinatorial Mathematics: An Applied Introduction (5th Edition)
Ralph P. Grimaldi
評分標準
Homeworks and quizzes 30%
Midterm 30%
Final 40%
學分數
3
授課時數(周)
3
開課班級
A11041
修課人數
61
To understand the concepts, techniques and methods of Combinatorics.
授課形式
理論講述與討論-100.00%;個案分析或作品賞析-0.00%;專題實作與報告-0.00%;田野調查-0.00%;實驗-0.00%;其他-0.00%
課程內容與進度
1. Fundamental Principles of Counting
5. Relations and Functions
8. The Principle of Inclusion and Exclusion
9. Generating Functions
10. Recurrence Relations
教科書/參考書
Discrete and Combinatorial Mathematics: An Applied Introduction (5th Edition)
Ralph P. Grimaldi
評分標準
Homeworks and quizzes 30%
Midterm 30%
Final 40%
學分數
3
授課時數(周)
3
開課班級
A11041
修課人數
61
112-1_數值方法
教學目標
This course focuses on the intelligent application of approximation techniques to the type of problems that commonly occur in engineering and the physical sciences. The materials include various numerical methods related to solving these problems in the corresponding simplified one-dimensional (or certain higher-dimensional) applications. So that both theoretical and numerical investigations can be understood easily and the techniques can be extended intuitively to practical problems. The last part of this course will briefly introduce the finite difference methods for linear partial differential equations.
授課形式
理論講述與討論-60.00%;個案分析或作品賞析-0.00%;專題實作與報告-0.00%;田野調查-0.00%;實驗-0.00%;其他:in-class quizzes and take home assignments -40.00%
課程內容與進度
This course will cover the following topics (two to three weeks a topic): Topic 01: Fundamentals and Python Introduction Topic 02: Root-finding methods Topic 03: Interpolation and numerical differentiation and integration Topic 04: Solving linear system: direct methods and iterative approaches Topic 05: Linear and nonlinear least squares Topic 06: Machine learning: Basics Topic 07: Numerical differential equations
教科書/參考書
Textbook: R. L. Burden, J. D. Faires, and A. M. Burden, Numerical Analysis, 10th edition. Lecture notes: https://drive.google.com/drive/folders/1ibdNjsOhCNt3b7-3QpB9yP0SMgW0g4cC?usp=share_link
評分標準
Things are VERY IMPORTANT: (第一堂課請一定要到) * Please show up in the first class. You will know how to pass the course efficiently. * Grading: In-class quizzes and take-home assignments (40%) and two exams (60%).
學分數
3
授課時數(周)
3
開課班級
A11041
修課人數
60
This course focuses on the intelligent application of approximation techniques to the type of problems that commonly occur in engineering and the physical sciences. The materials include various numerical methods related to solving these problems in the corresponding simplified one-dimensional (or certain higher-dimensional) applications. So that both theoretical and numerical investigations can be understood easily and the techniques can be extended intuitively to practical problems. The last part of this course will briefly introduce the finite difference methods for linear partial differential equations.
授課形式
理論講述與討論-60.00%;個案分析或作品賞析-0.00%;專題實作與報告-0.00%;田野調查-0.00%;實驗-0.00%;其他:in-class quizzes and take home assignments -40.00%
課程內容與進度
This course will cover the following topics (two to three weeks a topic): Topic 01: Fundamentals and Python Introduction Topic 02: Root-finding methods Topic 03: Interpolation and numerical differentiation and integration Topic 04: Solving linear system: direct methods and iterative approaches Topic 05: Linear and nonlinear least squares Topic 06: Machine learning: Basics Topic 07: Numerical differential equations
教科書/參考書
Textbook: R. L. Burden, J. D. Faires, and A. M. Burden, Numerical Analysis, 10th edition. Lecture notes: https://drive.google.com/drive/folders/1ibdNjsOhCNt3b7-3QpB9yP0SMgW0g4cC?usp=share_link
評分標準
Things are VERY IMPORTANT: (第一堂課請一定要到) * Please show up in the first class. You will know how to pass the course efficiently. * Grading: In-class quizzes and take-home assignments (40%) and two exams (60%).
學分數
3
授課時數(周)
3
開課班級
A11041
修課人數
60
112-1_數學實習(三)
教學目標
本課程旨在配合高等微積分(一)帶領學生進行相關習題演練實習,使學生具備進入近代分析(例如,實變和複變函數論)研習的能力。
授課形式
理論講述與討論-20.00%;個案分析或作品賞析-30.00%;專題實作與報告-30.00%;田野調查-0.00%;實驗-0.00%;其他:考試-20.00%
課程內容與進度
第 一 週 Completeness and the real number system, Cauchy sequences, and least upper bound 第 二 週 Cluster points,lim inf and lim sup, norms, inner product, and metric 第 三 週 Open and closed sets, accumulation points, sequences 第 四 週 Compactness, and the Heine-Borel theorem 第 五 週 Path-connected and connected sets 第 六 週 Images of compact and connected sets of continuous mappings,the boundedness of continuous functions on compact sets 第 七 週 The intermediate value theorem ,uniform continuity 第 八 週 Differentiation of functions of one variable 第 九 週 檢討高等微積分期中考試題 第 十 週 Integration of functions of one variable 第十一週 Pointwisea and uniform convergences 第十二週 The Arzela-Ascoli theorem and the contraction mapping principle 第十三週 The Stone-Weieratrass theorem, the Dirichlet and Abel series 第十四週 Power series and Cesaro and Abel summability 第十五週 Definition of the drivatives and matrix representation 第十六週 Conditions of differentiability and the chain rule 第十七週 Taylor theorem and extreme value problem 第十八週 重要觀念回顧
教科書/參考書
Text Book: An Introduction to Analysis, 4ed. Authors :William R. Wade
評分標準
平時演習成績 100 %
學分數
1
授課時數(周)
2
開課班級
A11141
修課人數
37
本課程旨在配合高等微積分(一)帶領學生進行相關習題演練實習,使學生具備進入近代分析(例如,實變和複變函數論)研習的能力。
授課形式
理論講述與討論-20.00%;個案分析或作品賞析-30.00%;專題實作與報告-30.00%;田野調查-0.00%;實驗-0.00%;其他:考試-20.00%
課程內容與進度
第 一 週 Completeness and the real number system, Cauchy sequences, and least upper bound 第 二 週 Cluster points,lim inf and lim sup, norms, inner product, and metric 第 三 週 Open and closed sets, accumulation points, sequences 第 四 週 Compactness, and the Heine-Borel theorem 第 五 週 Path-connected and connected sets 第 六 週 Images of compact and connected sets of continuous mappings,the boundedness of continuous functions on compact sets 第 七 週 The intermediate value theorem ,uniform continuity 第 八 週 Differentiation of functions of one variable 第 九 週 檢討高等微積分期中考試題 第 十 週 Integration of functions of one variable 第十一週 Pointwisea and uniform convergences 第十二週 The Arzela-Ascoli theorem and the contraction mapping principle 第十三週 The Stone-Weieratrass theorem, the Dirichlet and Abel series 第十四週 Power series and Cesaro and Abel summability 第十五週 Definition of the drivatives and matrix representation 第十六週 Conditions of differentiability and the chain rule 第十七週 Taylor theorem and extreme value problem 第十八週 重要觀念回顧
教科書/參考書
Text Book: An Introduction to Analysis, 4ed. Authors :William R. Wade
評分標準
平時演習成績 100 %
學分數
1
授課時數(周)
2
開課班級
A11141
修課人數
37
112-1_微分方程(一)
教學目標
Many problems in the physical world when formulated quantitatively in mathematical terms, lead to ordinary (and partial) differential equations The aim of the course is to enable students to obtain knowledge on theory and qualitative analysis of ordinary differential equations (analytically and numerically) and to understand the connections between the different aspects in the study of differential equations.
授課形式
理論講述與討論-80.00%;個案分析或作品賞析-0.00%;專題實作與報告-20.00%;田野調查-0.00%;實驗-0.00%;其他-0.00%
課程內容與進度
0. Introduction 1. First order differential equations - linear: method of integrating factors, separable equations. - nonlinear: autonomous equations and population dynamics, exact equations and integrating factors. - the existence and uniqueness theorem. 2. Second order linear differential equations - linear homogeneous equations and fundamental solutions. - linear independence and Wronskian. - characteristic equations, repeated roots and complex roots. - non-homogeneous equations. 3. Higher order linear differential equations - general theory of nth order linear equations. - method of undetermined coefficients, variation of parameters. 4. Series solutions of second order linear equations - series solutions near an ordinary point - regular singular points - series solutions near a regular singular points 5. The Laplace transform. - definition and solution of IVPs. - step functions. - discontinuous forcing functions and impulse functions. - the convolution integral.
教科書/參考書
Elementary Differential Equations and Boundary Value Problem - Boyce and DiPrima.
評分標準
期中考:35%; 期末考:35%; 平時表現與小考:30%。
學分數
3
授課時數(周)
3
開課班級
A11141
修課人數
94
Many problems in the physical world when formulated quantitatively in mathematical terms, lead to ordinary (and partial) differential equations The aim of the course is to enable students to obtain knowledge on theory and qualitative analysis of ordinary differential equations (analytically and numerically) and to understand the connections between the different aspects in the study of differential equations.
授課形式
理論講述與討論-80.00%;個案分析或作品賞析-0.00%;專題實作與報告-20.00%;田野調查-0.00%;實驗-0.00%;其他-0.00%
課程內容與進度
0. Introduction 1. First order differential equations - linear: method of integrating factors, separable equations. - nonlinear: autonomous equations and population dynamics, exact equations and integrating factors. - the existence and uniqueness theorem. 2. Second order linear differential equations - linear homogeneous equations and fundamental solutions. - linear independence and Wronskian. - characteristic equations, repeated roots and complex roots. - non-homogeneous equations. 3. Higher order linear differential equations - general theory of nth order linear equations. - method of undetermined coefficients, variation of parameters. 4. Series solutions of second order linear equations - series solutions near an ordinary point - regular singular points - series solutions near a regular singular points 5. The Laplace transform. - definition and solution of IVPs. - step functions. - discontinuous forcing functions and impulse functions. - the convolution integral.
教科書/參考書
Elementary Differential Equations and Boundary Value Problem - Boyce and DiPrima.
評分標準
期中考:35%; 期末考:35%; 平時表現與小考:30%。
學分數
3
授課時數(周)
3
開課班級
A11141
修課人數
94